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Introduction: This lecture addresses a particular methodology to address one 
(thermodynamic driving forces) of the two terms (thermodynamics + kinetics) that 
determine evolution in non equilibrium processes at the atomic level. It is written at an 
introductory level and focused into the applications to a particular system, FeCr. Since 
most of the problems related to materials behavior under irradiation are non equilibrium 
processes, the challenge for computational modeling is to capture the relevant aspects of 
these wide class of problems. 
It can clearly bee seen that today’s belief on the power of the computational approach to 
physics and materials science has become a commonplace. The combination of models 
and computers constitutes a paradigm in modern science. 
It is important to highlight that quantitative computational materials science, i. e. a 
discipline aimed at predicting properties of real materials under real conditions, 
indubitably stands on two legs: quantum mechanics and thermodynamics. Unfortunately 
the quantum mechanics problem can never be solved exactly and therefore, we always 
make use of models that necessarily capture partial aspects of reality. But it is important 
to highlight that models at all levels have ultimately to search for their physical content 
deep inside these two roots.  
This is the reason that justifies the multiscale approach to real problems, so well 
established in the research on nuclear materials. An un-exhaustive list of approaches 
would certainly have the ab initio approach for electronic structure, the empirical 
potentials for large scale molecular dynamics, MD, the kinetic Monte Carlo, k-MC, 
approach for long time atomic scale evolution, the phase field methodology for 
microstructure evolution, and the continuum mechanics for the macroscopic scale 
response, among others.  
Regarding thermodynamics, its importance can not be overstated. Free energies 
determine equilibrium, i. e. where a system wants to go. Additionally, free energy 
differences determine the strength of the forces that drive systems towards equilibrium. 
Unfortunately free energies are difficult to measure both experimentally and numerically. 
As examples, note that experimentally, equilibrium can not always be reached in the time 
scale available at the laboratory if diffusion is too slow; numerically, free energies are 
given by integrals over the phase space accessible to the system, impossible to do except 
for some very particular cases (we come back to this issue below). This last fact is what 
drives a family of computational approaches to obtain these key functions through 
different and complementary approaches. 
At this point it is important to make a clear distinction between modeling and 
simulations.  Setting up a model for a physical system, that is equivalent to say giving a 
recipe for the total energy, even the simplest one as for example the Lennard Jones, LJ, 



pair potential for interaction among noble gas atoms, already completely determines its 
equilibrium and non equilibrium thermodynamic behavior. However, solving the model, 
i. e. getting its properties, is a task of diverse complexity. Models can be classified into 
two big families: the ab initio models, that is models with no free parameters, and the 
empirical models. The first class contains only a few examples that are so successful that 
dominate the scene. These are models that solve the unsolvable many body quantum 
mechanics Hamiltonian by making judicious approximations that, luckily enough, do not 
necessitate any case-specific parameter. Among them, the Local Density approximation 
(LDA) and the Generalized Gradient Approximation (GGA) to the Density Functional 
Theory (DFT), deserve particular mention. They are an extraordinary achievement of 
modern condensed matter physics. When addressing a particular problem, these models 
can give extraordinarily accurate results, as is the case for many elements and 
combination of elements in the periodic table, or can fail, as in the case of Actinides or 
late transition metal oxides. If they fail for the case of interest, then we have no other 
alternative than moving to the next class of models, the empirical models.  
By their very definition, there are infinite many empirical models, from the complex 
LDA+U and LDA+DMFT to the simplest LJ. Models always capture partial aspects of 
reality, those aspects that we believe are important for the problem at hand. As said, 
models can have different degrees of complexity and solving them is a discipline of 
science by itself, namely computer simulations. Running a simulation means solving a 
model using computers. This task can be done exact or using approximations. For 
example, running a molecular dynamics (MD) simulation of a set of classical LJ particles 
gives exact results, as Newton equations are the actual equations governing the time 
evolution of the system. Perhaps MD cannot afford the time scale needed for some 
problems, like diffusion, but this is another story that does not invalidate the fact that the 
solution is exact. The complementary example is running a lattice k-MC simulation of a 
LJ alloy; it will give approximate results since, just to mention one, the vibrational 
entropy contribution to the free energy is missing. 
 
 

 
Figure 1: Block scheme of the strategy followed in this work to obtain thermodynamic 

functions and empirical potentials for alloys. For details, see text. 
 
Having defined the computational modeling and simulations landscape, let’s move now 
to the methodology we address in this lecture, namely, obtaining thermodynamic 
functions via empirical potentials so as we understand the driving forces acting in non-
equilibrium processes. Figure 1 shows a conceptual flow chart that helps understanding 
the role of different components of the alloy modeling strategy. Other lectures in this 



Volume by A. Pasturel and I. Abrikosov describe the basics of the ab initio models and 
their practical ways to solve them; they also discuss the approximations used to go from 
ab initio energetics to finite temperature properties and in particular to thermodynamic 
functions. G. Inden discussed the CALPHAD (CALculations of PHAse Diagrams) 
approach to thermodynamics, which is based essentially on experimental data. In 
summary, the two left-most blocks of the diagram in Figure 1 were covered by these 
lectures.  
We emphasize here, by way of the vertical arrow linking the ab initio to the 
Thermodynamics modules, and by the ‘~’ sign, that thermodynamic properties are always 
the result of approximations when coming from ab initio energetics. There is not such a 
thing as ‘ab initio thermodynamics’. For example, sample size limitations preclude 
exploring samples large enough to effectively average over all possible local order 
configurations, as the thermodynamic limit would require; consequently, the energetics of 
a solid solution needs to be obtained by for example mean field approximations such as 
the Coherent Potential Approximation (CPA), or by the Cluster Expansion (CE) method. 
Similarly, vibrational entropy requires long MD runs at various temperatures, as we’ll see 
below, unaffordable by ab initio techniques that then need to recourse to the harmonic or 
quasy-harmonic approximations to it. 
In our work we follow the path indicated by the red arrows in Figure 1, namely, from the 
ab initio energetics for the alloy at 0 K, from experimental results, and from 
thermodynamics phase diagrams information extracted from the CALPHAD database, we 
develop first an empirical potential for the alloy and then, using MD in a ‘thermodynamic 
package’ that performs a series of calculations that we describe below, we calculate free 
energies and phase diagrams exact, i. e. with no approximations, as the horizontal black 
arrow in Fig. 1 suggests. The approximation in this method resides, of course, in the 
description of reality through an empirical potential, as indicated by the ‘~’ sign over the 
red arrow. The success of this step is system-dependent: some alloys can quite accurately 
be described by empirical potentials, some others can not, and it is precisely here where 
the interest of this methodology stands: if a particular alloy can satisfactorily be described 
by an empirical potential, this means, if the thermodynamic functions reasonably describe 
free energies and phase diagrams as they appeared in nature, or in the CALPHAD 
database, or in the ab initio results, then we have a potential that can be used in large 
scale MD and MC computer simulations to study equilibrium and non equilibrium 
processes, which are at the core of radiation damage studies. 
 
Computational thermodynamics (in one of its many flavors): The evolution of a 
physical system is determined by both i- thermodynamic driving forces and ii- kinetic 
effects. Figure 2 shows the basic theoretical steps that lead to this assertion. The first law 
of thermodynamics states that equilibrium for an isolated system is given by the 
maximum of entropy, S, as a function of the internal variables of the system, ζ. This is a 
postulate, i. e. it does not emanate of any other law; it is therefore the starting point of 
thermodynamics. When this postulate is reformulated for a system in contact with its 
surroundings, and can therefore exchange heat Q, work W, and particles N, it translates 
into saying that equilibrium of such a system is defined by the minimum of a new 
function, the Free Energy g.  



Having defined equilibrium, we introduce now a simplifying assumption that allows us to 
treat non-equilibrium 
systems on an analytic 
basis: the linear response 
theory (we go through this 
step just for the purpose of 
this explanation; computer 
simulations usually are not 
bound to it). Let’s assume 
that for small departures 
from its minimum, g is 
quadratic in its variables; 
then forces are proportional 

to displacements (equivalent to the Hook’s law in elasticity). Repeating once again the 
argument, we assume that currents (or fluxes, or velocities) are proportional to forces 
(equivalent to the Ohm’s law in electricity). Equation 1 summarizes the assumptions 
introducing an important quantity in the theory of irreversible processes: the Onsager 
Phenomenological Matrix, L: 
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This equation is similar to the Fick’s first law, but it is much richer: the gradient of the 
chemical potential replaces the gradient of composition. It is in this term that all 
thermodynamics resides. The relation between Fick’s law and Onsaguer 
Phenomenological equations for the particular case of ideal solutions is discussed in the 
lecture by G. Inden in this volume. In what follows we do not make any assumption on 
the nature of the alloy and let µ carry all the complexity of the actual system under study. 
Important to highlight here is the fact that due to the matrix character of L in Eq. (1), 
there is a coupling between forces and fluxes of all species in the system, represented by 
the off-diagonal terms of L. Examples of this are the well know Soret effect (coupling of 
grad T with flux of solutes), Peltier (coupling of grad E –electric field- with flux of heat), 
Seeback (coupling of grad T with flux of electrons), etc. The chemical potential of each 
species, µj, is the derivative of the free energy with respect to the number of particles of 
species j. It carries all the information regarding how these particles interact with their 
surroundings. For heterogeneous precipitation studies, as we describe in this lecture, it 
carries also the information of strain fields produced by extended defects. 
The Gibbs free energy g and the Helmholt free energy F are given by 
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For computational thermodynamics, the vocabulary of statistical mechanics is more 
adequate since it expresses thermodynamic quantities in terms of the microscopic 
mechanical degrees of freedom; we introduce then the partition function Ω, with the 
integral in Eq. (3) running over the all degrees of freedom of the system: 
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From F, all thermodynamic quantities can be obtained; for example: 
 

           (4) 
 
Entropy is a difficult quantity to measure; there is no ‘entropy-meter’ as is a volt-meter, 
baro-meter, etc. Some quantities, like F and S, called thermal quantities, can not be 
measured as an average over an ensemble, as mechanical quantities can (E, V, T, P, …), 
but require calculating volume integrals in phase space, as in Eq. (3). This is the core of 
the difficulty to calculate entropies and free energies from computer simulations.  
The basic assumption that links statistical mechanics to molecular dynamics is the 
hypothesis of ergodicity that says that a time average equals an ensemble average: 
 

           (5) 
 

where 
 
     and    
 
 
Unfortunately free energy, Eq. (3), is clearly not an ensemble average (i. e. it is not a ratio 
of two integrals as in Eq. (5)) and can therefore not be obtained as an average over a MD 
run. Computational thermodynamics addresses the fact that F can not be obtained using 
MD. 
Let’s then look in more detail at the integral defining the partition function Ω, Eq. (3). 
There are only a few cases where it can be evaluated analytically, namely, in cases where 
the Hamiltonian H(x) is quadratic in space q’s and/or momentum coordinates, p’s, 
because in such cases variables are not coupled and Gaussian integrals are just numbers. 
Such cases are the ideal gas (H=p2/2m) and the harmonic oscillator (H~p2+q2). For one 
particle in one dimension the ideal gas partition function can easily be seen to be, 
 

(6) 
 
 

where Λ is called the De Broglie thermal wave length. For the harmonic oscillator 
(H=p2/2m+mω2q2/2) in turn, 
 
 

(7) 
 

where TE is the Einstein frequency. The generalization for binary mixtures of ideal gas 
particles or harmonic oscillators is straight forward, except for some configurational 
entropy considerations; a detailed treatment can be found in the References listed at the 
end. The reader can verify that from Eqs (6) and (7), and using Eq (4), the familiar 
expression for the energy of these systems is obtained. 
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So far, the knowledge of the free energies for these 2 very simple systems seems not to 
help in our quest of the free energy of more realistic Hamiltonians. However, a very 
helpful procedure, known as the ‘switching Hamiltonian technique’, provides the path to 
our goal. Let’s assume a system described by a Hamiltonian H that is a linear 
combination of two different Hamiltonians, U and W, U being the system we are 
interested on, and W being one of the systems described above, for which the free energy 
can be obtained analytically, 
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Let’s now evaluate the derivative of the free energy of this Hamiltonian with respect to λ. 
Using Eq. (3) it is easy to show that, 

 
 

(8) 
   

 
Eq. (8) states that the derivative of a thermal quantity, F, with respect to an internal 
parameter of the Hamiltonian, λ, equals the ensemble average of the derivative of H with 
respect to that variable, the latter being a mechanical quantity. Remember that ensemble 
averages (mechanical quantities) can be obtained by MD, using the hypothesis of 
ergodicity, Eq. (5). Then our problem is solved because if we can calculate Eq. (8), then 
F can be obtained by integration! 
 

(9) 
 
 
The last step that completes the methodology is the Gibbs-Duhem integral of the enthalpy 
that gives free energy at a temperature T given its value at temperature T0,  
 

(10) 
 
A detailed description of this approach can be found in the References. The methodology 
described above is exact, i. e. there is no approximations to the free energy of the 
Hamiltonian H. However, the computational cost of evaluating Eqs. (9) and (10) is too 
high to be used with ab-initio Hamiltonians. For such Hamiltonians it is necessary to use 
approximations (typically harmonic or quasi-harmonic for the vibrational entropy, and 
cluster expansion for the energy; see lectures by A. Pasturel and I. Abrikosov in this 
volume).  
For illustration purposes, a view of the integral in Eq. (9) for the bcc phase of Fe as 
described by an Embedded Atom empirical potential is given in Figure 3, and a view of 
the enthalpy integration appearing in Eq. (10), for the bcc and fcc phases of the same 
potential is given in Figure 4. 
The numerical accuracy of these quantities is crucial for the precision of the results, 
which requires then long runs to make the hypothesis in Eq. (5) valid. 
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Finally, the free energies of the three relevant phases (bcc, fcc, and liquid) of the 
empirical potential for Fe are shown in figure 5. The constraint of high numerical 
accuracy is evident from this Figure that shows how similar all three functions are. 
Intersections of these lines signal the first order phase transitions among these phases. 

 

 
 

Figure 3: Average values of <U-W> vs 
λ for bcc Fe corresponding to the 

integrand of the switching Hamiltonian 
(c. f. Eq. 9). Numerical accuracy is 
critical for the prediction of the free 

energy.

From these free energies and Equation (4), we can get enthalpies and entropies to 
compare with metallurgical databases, like CALPHAD SSOL and validate in this way the 
empirical potential. 

 

 

 
Figure 4: Enthalpy of Fe as a function of 
temperature. Heating and cooling runs 

are done consecutively. Overheating and 
undercooling due to size effects are 

clearly observed, which help obtaining 
enthalpy of solid and liquid phases 
beyond its equilibrium temperature 

ranges. 

 
Figs. (6) shows enthalpy and entropy for the bcc and liquid Fe. This figure clearly shows 
one of the main difficulties in modeling Fe, either ab initio and empirically. The 
discrepancies with experimental data are notorious in both phases.  The reasons for it are 
to be found in the contribution of magnetic excitations. Around the Curie temperature of 
Fe, TC = 1033 K, an anomaly is observed in the enthalpy as well as in the entropy of the 
CALPHAD bcc phase, which is, of course, absent in the empirical prediction. The 
anomaly is the consequence of the excitation of the magnetic degrees of freedom that, on 
approaching the ferro-paramagnetic (FM-PM) second order phase transition from below, 
start to absorb energy, and consequently increase enthalpy and entropy. Above TC, the 
magnetic system is completely disordered and does not absorb energy any more. The 
empirical potential does not show the anomaly, as the dynamics of magnetic degrees of 
freedom are not modeled; only their contribution to the 0 K energetics is accounted for. 
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This problem has a fundamental as well as a technical origin. For CALPHAD, the FM 
and PM phases are not treated as different phases. Both are identified as bcc Fe with 
thermodynamic functions that include the magnetic contribution and its T-dependence. 
For ab initio or empirical potentials, the bcc FM phase is different from the bcc PM 
phase. It can then be said that the broken lines in Fig. (6) report enthalpy and entropy of 
FM bcc and liquid Fe and that other lines should be added for the corresponding PM 
phases.  
 

 

 
 

Figure 5: Free energies of bcc, fcc, and 
liquid phase of Fe as described by the 

Embedded Atom Model empirical 
potential. Intersections of these lines 

signal the first order phase transitions 
among these phases  

A different empirical potential, based on a different ab initio calculation, are needed to 
describe the PM phases. In what follows, then, we will discuss the empirical potential 
modeling of the bcc FM phase of Fe, i. e. the bcc phase well below ~ 1000K. 

 

 

 
 
 
 
 

Figure 6: Enthalpy and entropy for the 
bcc and liquid phases of pure Fe as 
functions of temperature.  The solid 

(dashed) lines refer to the CALPHAD 
(empirical potential) results.  The 

enthalpy of the bcc phase at 298.15 K is 
taken as zero of energy. For a discussion 

on the discrepancies, see text. 

 
To move from pure elements to binary alloys we use the standard formulation developed 
by the CALPHAD group, i. e. the free energies of a pure element and a solid solution are 
written as, 
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Unary Phase 
 
Multi-component Phases             (11) 
 
where 
 
and 
 
The excess enthalpy of mixing is written in terms of the Redlich-Kister polynomial 
expression, 
 

          (12) 
 
The meaning of Eqs (11) is that a description of a multicomponent system can 
constructed by first describing the properties of the elements, then the properties of the 
binaries, and then the combination of binaries. For binaries, the free energy is written as 
excess quantities with respect to the linear interpolation between the two components. 
These excess quantities have two contributions, one from the entropy associated to 
mixing, and the other from the enthalpy and vibrational entropy associated to the mixing. 
The advantage of writing the thermodynamic functions for alloys in the same vocabulary 
as CALPHAD resides in the possibility to directly compare results from empirical models 
to those of experiments, i. e. to make possible a direct ‘dialog’ between quantities 
calculated in the computer and quantities measured and adjusted by the CALPHAD 
group. A description of equations (11) and (12) can be found in the G. Inden lecture in 
this volume. 
We focus now the attention on the results we get for the FeCr alloy. As shown in the I. 
Abrikosov lecture, this system presents an anomaly in the heat of mixing, that shows a 
change in sign from negative for low Cr content, indicating tendency to order, to positive 
for large Cr content, indicating a tendency to segregate into an heterogeneous solution 
composed of α and α’, both bcc solid solutions, rich in Fe and in Cr respectively. The 
empirical potential for this alloy had to incorporate explicit composition dependence in 
its terms, reflected in high order Redlich-Kister polynomial expansion, up to fourth order. 
Explicitly, the Embedded Atom type potential for this alloy has the form, 
 

(13) 
 
with 
 
 
Here h(x) is a polynomial depending on local composition x of the same order (4th) that 
needed to fit the heat of mixing results of P. Olsson et al. (see lecture by I. Abrikosov in 
this volume). The resulting representation of the heat of mixing, ∆h, compared to the ab 
initio – CPA results and to the CALPHAD data, is shown in Figure (7). 
With the potential so developed, we apply the ‘thermodynamic package’ to evaluate the 
free energy of the FM bcc phase, and obtain a phase diagram for that phase. The free 
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energy surface is shown in Figure (8); for details see the references. Black lines on the 
free energy surface are isotherms that, with the help of a ruler for example, are used to 
determine the common tangent points, i. e. the solvus line. 
The phase diagram is shown in Figure (9). Several differences are readily noticeable. 
Neither the miscibility gap nor the spinodal go to zero composition at 0 K on the Fe rich 
side of the diagram. This curious effect is due to the change in the sign of the heat of 
mixing of this alloy at about xCr = 0.08, as shown in Fig. (7) which implies finite 
solubility at low temperatures. We can say that the ab initio results showing a negative 
heat of mixing (instead of positive as for a normal segregating system) at low Cr 
composition has as a consequence that the phase diagram is substantially different at low 
T - low xCR. Our methodology, described in Figure 1, gave us the path from those 0 K 
result to the finite T properties reported in Figure (8).  
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Figure 7: Heat of formation versus 
composition for the FeCr bcc solid 

solution. Solid line is the CPA result for 
the PM phase and the fitted result using 

the phenomenological potential based on 
Eq. (13) (both coincide). Broken line is 
the CALPHAD data for the bcc phase. 
Note the change in sign of the CPA and 
the empirical potential curves at low Cr 

composition. 

The non-zero solubility at 0 K seems a contradiction to the fact that the entropy at 0 K 
should be zero. In fact, it is not. The phase diagram at 0 K between xCr = 0 and the start of 
the solvus line is incomplete. Because the formation energy is negative, we know that 
there must be one or more intermetallic (ordered) phases. Although this/these phases may 
be not relevant for applications due to its very small ordering energy, it is the subject of 
research now as a way to further understand this system. 
The implications of the results shown in Figure (9) are that Cr is much more soluble at 
low T that previously thought. Several experiments on irradiation and annealing of the 
binary FeCr suggested that the standard phase diagram might be not accurate at low Cr 
composition. The present result seems to be more in agreement with those experiments. 
For a discussion see References. 
The fact that the critical temperature at which the miscibility gap closes is much higher 
for the ab initio–empirical potential description of FeCr than for CALPHAD as shown in 
Fig (9) can be traced back to the heat of formation reported in Fig (7) which is already 
much larger than the value reported in CALPHAD database. This should not be 
considered as an error in the ab initio–empirical potential approach because, as we 
discussed already, the theoretical/numerical prediction corresponds to the ferromagnetic 
phase, while the real gap develops across a temperature regime where the magnetic 



transition takes place. Several groups are working today in the extension of the ab initio 
and empirical approaches to include magnetic degrees of freedom into the models, so as 
to include their contribution explicitly. 
 

 

 
 
 

Figure 8: Free energy of a FeCr 
random solid solution in the 

ferromagnetic phase, as a function of 
temperature T and Fe composition xFe. 
Note the anomalous behavior at low T 
and high xFe related to the change in 

sign of the heat of formation (see text). 

 
Precipitation in FeCr alloys: Having obtained the thermodynamic behavior of an 
empirical potential for FeCr, and seen that this behavior is quite complex as to suggest 
large Cr solubility at low T, we move now to the applications of the model to 
precipitation processes. We show two examples, one on homogeneous and one on 
heterogeneous precipitation in FeCr. 
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Figure 9: Part of the phase diagram of FeCr corresponding to the bcc phase. Other 
pahses have been suspended. Dashed line is the CALPHAD solvus corresponding to a 

bcc phase that undergoes a FM-PM transition at TC ~ 1000K for pure Fe, and at 
decreasing T as xCr increases. Solid line is the prediction of the solvus for the FM bcc p 

phase. Comparison has to be made only for temperatures well below TC. Dash-dot line is 
the location of the spinodal inside the miscibility gap. 

 
 
Since we have an empirical Hamiltonian for this system that satisfactorily captures its 
complexity, we can think on using it for MD simulations which would provide exact 
results for it time evolution, as discussed in the introduction. However, precipitation 
kinetics involves diffusion, with a time scale inaccessible to MD. We need to use then 
stochastic methods.  
Ideally we are interested in solving a non equilibrium process by some method that would 
account for both terms in Eq. (1), namely, driving forces and kinetics. There exists no 
such method at present, mainly due to intrinsic complexity hidden in Eq. (1). To simplify 
the problem two strategies are currently used based on whether we focus the accuracy on 
the kinetic or on the thermodynamic aspects. 
Kinetic Monte Carlo approaches, as discussed in the lecture by P. Olsson in this volume, 
provide the time scale of the kinetics but at the price of simplifying the driving force 
landscape; just as an example among several others, the stress field induced by the 
presence of a grain boundary can not be accounted for. In this work we focus on the 
driving forces, i. e. on where the system wants to go, at the price of neglecting the kinetic 
effects. We emphasize that this approximation limits the predictions to true equilibrium 
only, while often in nature what counts are states of meta-stability. We come back to this 
point at the Conclusions. 
Metropolis Monte Carlo is the algorithm for the search of equilibrium at finite 
temperature. In a similar way as conjugate gradients or steepest descent are algorithms to 
find minima of energy, Metropolis MC is an algorithm to find minima of free energy. 
From a starting configuration, say a saturated solid solution, the algorithm will drive the 
system towards a minimum of free energy (a segregated alloy) through a series of states 
where each one is obtained from the previous one by an ad hoc choice of fluctuations. In 
our examples below, these fluctuations involve displacements and random switch of 
chemical identity, in what is known as the Semi-Grand Canonical Metropolis MC. We 
have developed a massively parallel code for this purpose, whose description can be 
found in the References. 
We study first homogeneous precipitation of α’ phase in a saturated FeCr solution at two 
compositions, xCr=0.15 and 0.5, at T=750 K, both compositions inside the miscibility gap 
as can be seen in Figure (8); xCr=0.15 is just above the solubility limit, while xCr=0.5 is 
well within the spinodal. Figure (10) shows two dimensional, 2D, slice sequences from 
3D MC simulations that represent steps towards equilibrium, starting from a solid 
solution and evolving towards a state with the sample separated into regions of α and α'. 
All three simulations correspond to perfect crystal cubic samples with ~2 million atoms 
and periodic boundary conditions. Frames a-d show homogeneous precipitation and 
coarsening of α'. The fact that Cr-Cr interaction is repulsive implies that there is a critical 
size for the nuclei to be stable; and the fact that the decomposition mechanism at this 



concentration is nucleation and growth implies that the concentration of the nuclei is 
always the saturation composition of α', i. e. xCr~0.99. As MC steps go on, the 
precipitates adopt a spherical shape, indicative of small anisotropy on the interface 
energy. Panels e-h focus on one particular precipitate, highlighting the fact that there is a 
critical size below which there are no stable precipitates, and the evolution to spherical 
shape. Panels i-l show evolution of the alloy via spinodal decomposition, i. e. continuous 
increase of composition differences from xCr=0.5 to the terminal solution values xCr=0.12 
for α and xCr=0.99 for α'. It is important to point out that these simulations make no 
approximations in the driving force for segregation, in particular, the surface energy and 
eventual size mismatch of the precipitate is fully accounted for. 
 

 
 

Figure 10: 2D slice sequences along three MC simulations starting from a saturated 
solid solution and evolving towards thermodynamic equilibrium. For details see text. 

Taken from Journal of Minerals, Metals and Materials (JOM), April 2007, p52-57. 
 
 
We now analyze the case of heterogeneous precipitation, i. e. precipitation in the 
presence of defects. We choose to explore this process in a polycrystalline sample with 
average grain size of 5 nm. In this way we can observe in a single run a multiplicity of 
configurations of grain boundaries, triple and higher order junctions, and eventually 
surfaces. Figure (11) shows a slice taken from a cubic sample; simulation parameters are 



xCr=0.15 and T=750 K. Blue dots are Fe atoms sitting at boundaries, red dots are Cr 
atoms. Fe atoms at perfect bcc positions are not shown. A surprising effect can readily be 
observed: excess Cr does not precipitate at boundaries, instead all α’ precipitates are in 
the interior of the grains, avoiding contact with the grain boundary network. We observe 
a similar behavior for free surfaces.  
 

 
 
 

 
 
 
 

Figure 11: 2D slice of a nanocrystalline 
Fe sample with an average grain size of 
5 nm. We observe several configurations 
of grain boundaries and triple junctions. 

Blue dots are Fe atoms sitting at 
boundaries, red dots are Cr atoms. Fe 
atoms at perfect bcc positions are not 

shown. For details see text. 

 
These two examples, which are fully developed in the References, are used here to 
highlight the relevance of this thermodynamic approach to MD/MC simulations. 
Traditionally, k-MC is used at approximation levels that do not fully account for the free 
energy landscape. FeCr, as we have seen, is a complex material that shows a change in 
sign in its mixing energy, which implies a competition between ordering and segregation. 
Without explicitly considering this anomaly, as would be the case with a k-MC 
simulation that does not evaluate ‘on the fly’ the actual local free energy landscape for 
the moving atom, the effects of this change in sign would not be captured. Similarly, 
because FeCr is the basics binary for ferritic stainless steel, understanding heterogeneous 
precipitation for example at surfaces, is necessary. Heterogeneous precipitation is 
controlled by the properties of defects, such as surfaces, grain boundaries, dislocations, 
etc., where the crystalline periodicity is altered. Monte Carlo algorithms must explicitly 
consider these displacements to correctly account for the phenomenon. There is no k-MC 
today able to address both these issues (actual free energy landscape and displacements) 
due to the exceedingly large computer resources needed.  
By addressing equilibrium issues using Metropolis MC, as we do here, we explore the 
force terms in Equation (1), as a step on the path to a full description of complex alloys in 
heterogeneous microstructures. 
 
Summary: In this lecture we presented a methodology to obtain free energies from 
empirical potentials and applied it to the study of the phase diagram of FeCr. 
Subsequently, we used Metropolis Monte Carlo to analyze homogeneous and 
heterogeneous precipitation of the Cr rich solid solution α’. These examples are part of 
our work in the area of steels for nuclear applications and can be found in several 
publications of our group cited as References. 
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